
Eckart Modrow
emodrow@informatik.uni-goettingen.de

The

SQLsnap-Supermarket

A project illustrating new options for Snap!

Status: 2014-03-04

- 2 -

Eckart Modrow

SQLsnap-example „Supermarket“

Let’s assume we have a supermarket with different divisions:

 a scanning cash register (reads the barcodes on the products, produces article numbers and

bills)

 a stock management with integrated database (gets article numbers, produces prices and

orders products from suppliers, if necessary)

 a “smart” scale for fruits (recognizes the fruit with a camera, produces barcodes)

 an advertising department (responsible for payback, promotion, special offers, …)

 a security department (responsible for payment in the parking garage, “banned” customers

which doesn’t pay, …

All division-implementations run on different computers and communicate by text files on a server.

And we use no “professional” procedures, but only “naïve” solutions asking for enhancement by the

students.

1. The scanning cash register

First we need an image of a scanning cash register. We take it as new costume of the turtle, send the

turtle to an appropriate position, force a stamp, and connect to an appropriate server. We put all

these blocks in a method init.

Now we need barcodes. If we don’t know anything about them, we invent new ones.

First attempt: We draw some black bars on the stage and try to find out their width. Then we draw a

new costume for the turtle, a “laser pointer” with a red spot at front. We can ask now, whether the

red spot touches the black color. Combined with the position of the laser pointer we get the widths

of the bars. We collect them in a list widths.

- 3 -

But first we write two methods find next black pixel and find next white pixel.

Find next black pixel works well, but find next white pixel does not. Why? If the front of the red

“nose” of the laser pointer touches a black bar, it stops. But the rest of the “nose” still touches the

white background. So we have to move the laser pointer some steps right before asking for a white

pixel. In addition the search process should stop, if the laser pointer touches the right edge. We get:

It’s easy to get the widths of all black bars: We make two variables (a list widths and a number new-

Width), measure the x-positions of the left and right bar-edges and put the differences in the list.

Due to the stopping-procedure the last value is irrelevant.

- 4 -

Now we need a code that tells what the bars mean. Let’s choose: we take the dual number system

with four digits, a “broad bar” (width > 35) means “1” and a small bar (width < 25) means “0”. We

draw some barcodes of this type as customs of the stage and test the script. To get the numeric value

of our barcode, we repeat four times: read the most right list item and change the value of a number

n in the usual way. Then delete the most right list item. If the list item is not in the correct range, we

report an error.

We send the value of the bar code to the stock management to get the actual price. We do this by

writing the bar code value to a text file newCode on the server.

The whole process can be compressed to one block.

The stock management has to read this file time by

time, and to report the correct price and label to a file

newPrice. Afterwards it sets newCode again to -1. The

cash register reads the file newPrice time by time and

gets price and label corresponding to the bar code

value. Afterwards it writes nothing to this file.

- 5 -

Exercises:

1. Real barcodes use the gaps between the black bars in the same way as the black bars: as

white bars. The width of the white gaps have the same meaning as the black ones. Change

the script collect all black bar widths to another collect all bar widths that counts the widths

of all black and white bars. (The first and the last bar are black.) If four black bars are used:

what is the biggest representable number?

2. Add some costumes to a new printer sprite that is able to print barcodes on the stage. First

the user is asked for a number.

3. Look for information about your national bar code system. In Europe you’ll find the EAN

codes. Change the printer sprite to a “national bar code printer sprite” that prints these

codes.

4. If the stock management doesn’t respond, the get new price script waits till infinity. Change

the script to an acceptable version.

5. If the stock management instance works well, the cash register gets answers of the type

<price>,<label>

Let the cash register produce bills for the customers including date and time, all purchased

products with prices and the sum of all prices. Taxes should be shown according to your na-

tional standards.

- 6 -

2. The stock management

The stock management uses a mySQL database on the server: here the snapex_example database.

There are three tables:

 products(pnr,label,maxstock,minstock,stock)

 distributors(dnr,name,zipcode,city,street)

 prices(pnr,dnr,price)

We have to answer if the scanning cash register asks for a price. So we have a permanent look for

changes of the newCode text file. But first we print a stock management image on the stage, connect

to the database, choose the snapex_example database and create variables for all used things: tables

and table-columns.

A query to find the actual price and label is simple. We produce the text of a SQL-query by combining

appropriate variables in the SELECT-block. The query is executed by the exec-SQL-command block.

- 7 -

The infinite loop is encapsulated in

a block answer new price. We have

a look there whether the file new-

Code has changed. If so, we ask the

SQL-server for price and label of the

product and write these to the file

newPrice, if we got a correct an-

swer.

If this script is running on the stock management instance of SQLsnap, the scanning cash register

instance gets the correct answer.

If you have write permissions on the server1, you can update the stock numbers. First you have to

find out the number of products with a certain code in the stock.

1 If not: install mySQL on the computer on which the „stock management instance” of SQLsnap runs. Connected
to localhost as user root you have write permissions.

- 8 -

In SQLsnap actually we have only blocks to construct select commands. So we use the exec sql-

command block directly for an update command.

If code is the product key, we can combine both blocks to an update command:

- 9 -

Exercises:

1. If some products are purchased, the stock declines below the minstock value. Order new

products, so that the missing product stock reaches the maxstock value. Find out the distrib-

uter with the lowest price for this product.

2. The supermarket wants to become a “bio supermarket”. Change the distributers for all pos-

sible products and adjust the prices.

3. Insert bio-products with different prices in the product list in addition to the cheep-products,

whenever possible.

4. Always on Saturday we need an update run. The prices of the distributers may have changed.

So we have to adjust the prices in the products table.

5. The supermarket works well, but he needs more money. Hike all prices up by 10%.

6. The stock management needs statistics about the sales per month and year. Collect the nec-

essary data and show the sales in appropriate diagrams.

7. Build a block to produce update-commands for mySQL .

Syntax: UPDATE <tablename> SET column = value {,column = value} WHERE <condition>;

Example: UPDATE products SET stock = 99 WHERE pnr = 11;

8. Build a block to produce insert-commands for mySQL .

Syntax: INSERT INTO <tablename> (column{,column}) VALUES (value{,value});

Example: INSERT INTO prices (pnr,dnr,price) VALUES (1,2,3.45);

9. Build a block to produce delete-commands for mySQL .

Syntax: DELETE FROM <tablename> WHERE <condition>;

Example: DELETE FROM distributors WHERE name = ‘Miller’;

- 10 -

3. The smart scale for fruits

The first attempt is to find some criteria to identify a fruit. We draw an apple, an orange, an apricot

and a banana.

The differences are obvious:

 apple and orange are round, the banana is long

 orange, apricot, and banana are orange-yellow, the apple (here) is green

 apricot is small, the others are bigger

But what means “round”, “long”, “yellow” and “green”, “big”???

We know, but the computer not. We have to teach him.

Distinguish round, oval and long

We put the object in the middle of the stage and send

a size-measuring-sprite from left to right and from

bottom to top. We measure the size of the object on

these sections and calculate the ratio. “Round” object

should have a ratio near 1, “long” objects another. For

“oval” objects we should use more directions, but for

now “oval” means “not long and not round”.

- 11 -

The measure horizontal size block delivers a list of

two values: left and right border, as well as meas-

ure vertical size block delivers bottom and top of

the object. With these results we can decide

whether an object is long, round or oval, and we

have the total size.

- 12 -

Find out the color of real objects

Normal fruits have different colors. So we have to measure

the mean color. We do this by measuring ten RGB-values: five

on the horizontal slice and five on the vertical. (That was the

reason to store the position of the object.) That’s easy. But

our RGB-value list may describe 256 * 256 * 256 colors. That

are 16.777.218 colors. A bit too much.

So we need a method to reduce the number of colors.

We try it this way: For each RGB-value we decide, whether we

have a “high” or a “low” value of this color. If “high” we set

the value to 255, if “low we set it to 0. We get two possible

values for each color, and a total of 2 * 2 * 2 = 8 possible col-

ors. First we try whether we have enough colors to see any-

thing relevant on a picture – or not.

We change the stagesize to 400 x 400 and load some pictures

of fruit as backgrounds of the stage.

- 13 -

Now we reduce the colors as described …

.. and find, that’s ok.

How does it work in acceptable time?

- 14 -

If we run the script color reduction, it works, but it lasts very very long. So we use the code mapping

ability of snap. SQLsnap fits JavaScript code to some blocks. We can show the code if we put a script

in the code of block:

To run the code directly in JavaScript we use the appropriate exec JScode of block. If we execute this

block, we get the changed image within some seconds.

We encapsulate the exec JScode of with the embedded script in a new reduce colors block and have

a very fast image processing block now.

Now we calculate the mean color of the

fruit and reduce the values again. If we do

this with an orange, we get a nice yellow.

And an apple is red – of course.

- 15 -

The reduce color block works as described: it gets a list with RGB-

values and returns a list with a reduced color.

Color codes:

We can derive color codes from the reduced colors: if we interpret 255

as “1” and 0 as “0” we get a dual code: yellow is “110” (6) and red “100”

(4).

- 16 -

Now we have the full toolbox for fruit recognition:

1. Take an image of a fruit as background of the stage or “stamp” it to the pen trails. You can do

this with help of a laptop camera or a smartphone. The background should be white.

2. Reduce the colors of the image.

3. Measure shape and size of the fruit.

4. Measure the mean color of the fruit and reduce it again.

5. Calculate the color code for the fruit.

The collected data shape, size and colorcode can be

used as fields of a database table. We have three

distinct values for shape and size and 8 values for

colorcode. So we can distinguish 3 * 3 * 8 = 72 dif-

ferent fruits.

- 17 -

Exercises:

1. Build a table of the following type for fruits:

PNr label shape size color code

123 red apple round big 4

223 cherry round small 4

456 banana long big 6

… … … … …

2. Add a table fruits to your database.

3. Change the collect data procedure to report label and price of the scanned object. Use data-

base commands to do this.

4. The color reduction process used is very rough. Invent a better method.

5. Our fruit recognition process only works well if we center the object in the middle and align it

horizontal. If we take a sprite with an appropriate costume we can center and align it auto-

matically before we leave a stamp. Do this.

6. If we use a more detailed color code we can describe more fruits. Would this be an ad-

vantage in all situations?

7. Maybe the background of the fruit image is not white. Can you help?

- 18 -

4. The security department

Our security department (among other things) is responsible for the parking garage. To simplify the

payment procedure the department implements an automatic recognition of car number plates.

Registered customers don’t need to stop in front of the barrier at the gate of the garage – that’s the

hope.

Car number plates have special fonts which are fine for pattern recognition. In Europe they have a

black border – good for uns. We try to identify the numbers on the plate. (To recognize the other

chars is your term.) Fortunately we have developed almost all tools to do this. You only have to ask

the people at the smart scale.

We try to find an extremely simple method to recognize chars on a car plate. The result will be very

sensitive to changes in size and position of the plate. But these disadvantages are easily correctable

by using more detailed measurements. Look on the exercises.

- 19 -

Dirty car plates

Normally car plates are not clean. They have some mud on it, and sometimes the black color has

partly vanished in the car wash. What to do?

First we need a grayscale picture: we

calculate the mean value of the red-,

green- and blue-value of each pixel and

take this as value for all three colors.

The pixel will be gray. We store the

result in the stage image. To speed up

we put the script in the exec JScode of

block and have the transformed picture

after some seconds. We put this block

in a new command block named

change to grayscale.

- 20 -

The next step is to transform the picture to a

black-and-white one. We choose a threshold

value (in this case 50) to split white and black

pixels. (It would be clever to do this together

with the grayscale transformation!) We build

a change to black and white block.

The result is:

Closing the gaps

Now we have a nice black and white im-

age of the car plate, but the chars are

fragmented where had been mud. We try

to close these gaps by filling them with

black color. So we thicken the black parts

of the image by attaching a black border

to all black parts. We choose the thickness

of this border to 1. But there is a problem.

If we write changed pixels into the same

picture we read from, the changes will be

read same steps later. So we need a pic-

ture for reading and another for writing –

and we have. We read from the stage and

write to the pen trails. If we subsequently

copy the changed image from pen trails to stage (copy from pentrails to stage block) the process can

be run again, and there are no collisions between original and changed pixels.

- 21 -

Result after one call of make chars fatter:

After some more calls of the sequence

 we get:

We need a method make chars thinner to scrape a layer of the black border – with the same prob-

lems as above – and the same solution (next page). The result of one call is:

- 22 -

We can switch between attaching black layers to exist-

ing black regions and scraping the layers again. It’s a bit

craftsmanship to find out the best combination of grow-

ing and melting phases to get readable letters. But the

result is much more compact than in the beginning.

Character recognition

OCR (Optical Character Recognition) uses complex operations, often with neural networks, to recog-

nize chars. We invent a simpler method, known from the smart scale. Because all characters have the

same width, we can find them easily if we’ve found the border of the car plate. Learn from the smart

scale scripts how to do this!

- 23 -

To simplify matters we use “clean

plates”. We begin to search verti-

cal lines on the plate with black

pixels on it from left to right at

the position x. If we’ve found the

first one, we got the beginning of

the first character. Now we look

for the next vertical line without a

black pixel. The x-position gives

the end of the first character. We

have a “window” with the first

character inside. The next line

with black pixels gives the width

of the gap between chars. xpos is

a global variable to store the

beginning of the actual char.

How to find the char code is described later.

- 24 -

We can step over all characters with the red

rectangle by calculating width of characters

and gap between them first. The next script

shows how to do this.

Now we try something like OCR. The starting point is that we have characters and rectangles around

them.

We imagine a “sensor-field” of three crossing green lines for each character and

measure the colors at the round points. We number the round points as shown. Let’s

have a look on the results (gray: difficult to say).

char P1 P2 P3 P4 P5 P6 P7 P8 Code(s)

0 00100100

1 01111110

2 01101010

3 01011100
01111100

4 11010001

5 00001100

6 0100100

7 01111010

8 00010100
01010100

9 00101100
00101110

P8

P4

P1

P2
P3

P5

5

P7
P6

- 25 -

At characters “3”, “8”, and “9” may occur errors if points P2, P3 and P7 aren’t well adjusted. But that

doesn’t matter too much. If we shift the sensors P3, P4 and P7 a bit so that they deliver distinct val-

ues, we can abstain from sensors P1, P2 and P8 – for example – and have already a usable code.

char P1 P2 P3 P4 P5 P6 P7 P8 code(s) value(s)

0 10010 18

1 11111 31

2 10101 21

3 11110 30

4 01000 8

5 00110 6

6 00010 2

7 11101 29

8 01010 10

9 10111 23

A practicable layout for the sensor-points could be:

Let’s go!

We take a car plate with all numbers on it as image for the stage.

- 26 -

We have to place the “sensors” at appropriate places

(here: (13|50), …), to read the color from the stage and

to build a code number from the colors interpreted as

dual numbers.

If we have done this, we transform the code number

into a plate number with:

We painted green dots at the sensor positions and a red

frame round the characters – and the result is what we

wanted.

- 27 -

Exercises:

1. In the examples only the horizontal alignment of the car-plate is measured. Find out the ver-

tical position as well. In the examples the sensorpositions in the char-rectangle are given ab-

solutely (“13 pixel right from border”, …). Address them relative to the size of the char-

rectangle.

2. The pattern recognition in the examples is very simple, but very sensitive against changes in

position and size of the car-plate. Use more sensors on better positions to identify the num-

bers on the plate.

3. If you have dirty car-plates the chars have no sharp borders. In consequence some sensors

will produce errors. Better the results by finding the “nearest correct code” of a wrong code.

4. Recognition programs can learn. If the script finds a not identifiable pattern, it should show

its result and ask for the correct character. But learned pattern and chars in a database-table

and use queries to identify new unknown patterns.

5. Use a sensor-field with more sensors. Try to identify more characters of your national font.

6. The security department needs a database with license plates and car-owners and their sta-

tus (customer, member of the staff, persona non grata, extern, …). Can you help?

7. Car-plate recognition is a big success of the security department. All members are very proud

and the staff admires the “sheriffs”. The advertising department wants to use the data of the

car-plate-table to honor frequent customers as VIP-customer. They get special parking areas

near the elevator. Write a query to identify VIP-customers.

8. After a while the VIP-customer area is occupied by the cars of pensioners and jobless per-

sons. So the advertising department extends the criteria for VIP-customers to a minimum

volume of sales. Because almost all customers use credit-cards that’s no problem. Better

your VIP-customer-query.

9. The advertising department considers that it would be useful to know not only, how much

sales volume a customer produces, but what he has bought. If they know the interests of the

customers they can supply them with specific promotion and special prices. Identify neces-

sary new tables and columns in the database to do this. Write an appropriate query.

10. The advertising department wants to know whether their promotion campaigns are success-

ful. Did they reach the customers? Try to answer the question based on the stored data.

11. In German highways the toll for trucks is determined by toll-collect-barriers which read the

car-plates crossing. They read ALL car-plates and delete the identification numbers of pas-

senger cars. Why is this appropriate? Discuss the consequences of storing all numbers and

positions.

- 28 -

5. The advertising department

The advertising department is emphasized about the scope of character recognition and wants to

expand this area: they try to find out who entered the supermarket. With a face recognition program

the customers shall be identified.

Face recognition

We try this on a similar way as fruit recognition. At first we draw some faces (similar to passport pho-

tos) and try to identify them.

Let’s look for faces. We do a color reduction, but a bit

more accurate as with the fruits. We ignore the blue-

channel of the pixels and reduce the red- and green-

values to three numbers: 0, 128 and 255. The result

of this simple transformation is quite good: the face-

color is now always the same.

 Paul Peter Mary Hannah

- 29 -

The next step is to ignore everything except the

faces: all different colors than orange are set to

white. We add …

… and get …

We’ve got the faces, but we need parameters to

describe them! We use size ratios similar to the fruit.

So we measure the distance between the eyes and

the distance to the mouth, the length of the nose

compared with the width of the face, …

“Eyes” and “mouth” are holes in the orange face. At

first we are looking for the eyes. The left one should

be above the middle and left of them on a passport

photo. We should find there white pixels with some

layers of white pixels around them. (Remember

make chars fatter!)

- 30 -

The right eye could be found on the same way as

the left one. Only the start-coordinates are

different. The same is for the mouth, but the mout

should be bigger th an an eye. An the nose is

marked by the first white pixel above the mouth.

So we can measue the positions of the eyes, nose

and mouth and can calculate their distances and the

ratios between these values. In find features these

results are marked green.

- 31 -

The results are:

If there is no real nose on the picture, the result is consequently wrong.

- 32 -

Now we can put the results in a database-table.

Name noseToEyes mouthToEyes mouthToNose

Peter 1.22 0.91 0.74

Paul 1.59 0.59 0.39

Mary 0 1.04 0

Hannah 0.73 1.00 1.37

If we ask the database for the name of a person, …

… we get an answer – if the person’s data are

stored.

- 33 -

Exercises:

1. The four images of the example are highly simplified. Do some experiments with real pic-

tures. Try to prepare them with an image manipulation tool so that they are ready to be ana-

lyzed by our scripts or reduce the number of colors used.

2. Find some additional parameters to describe faces.

3. The security department of our supermarket has to reject unwanted people (thieves, tramps,

…). If the face recognition identifies an “unwanted person” there will be an alarm in the secu-

rity sitting room and some security members will intervene. Sometimes this process produc-

es loud anger, so the security department decides to reject these persons a bit more sophis-

ticated: the barrier will not open, if these persons are identified in a car, the elevator doesn’t

work, doors doesn’t open, … Discuss the consequences of this decision.

4. The advertising department also has fine ideas. There are a lot of people staying in the su-

permarket but doesn’t buy anything or only few products. Others are buying, but only special

offers or cheap products. These are also “unwanted persons” because they occupy space

which better could be used by VIP-customers. Discuss the consequences of this decision.

5. “Unwanted persons” have to stay for a while in the supermarket before they can be identi-

fied. So the security department together with the advertising department creates “profiles”

for these persons, so that they could be identified BEFORE they enter the supermarket the

first time. Describe such “profiles” and discuss the consequences of this decision.

6. The advertising department knows from the cash register what customers buy. But many

people have a look on products, but don’t buy them. So the walk of customers through the

supermarket shall be tracked. This can be done by “car plates” or RFID-chips on the shopping

card or with face recognition. Now the advertising department knows in which products cus-

tomers are interested, they know their unfilled desires. Personalized special offers direct on

their smartphone can be produced. Or the customer-data could be sold to specialized shops.

Discuss the consequences of this decision.

7. The supermarket team wants to focus on VIP-customers. They identify premium-customers

by creating profiles accordingly (type of car, place of residence, personal criteria derived by

face recognition, buying behavior in the past, …). To avoid anger the “not-VIP-customers” are

allowed to enter the supermarket indeed, but there occur some difficulties (elevator doesn’t

work, … see exercise 3). Discuss the consequences of this decision.

8. Face recognition is available everywhere a camera is available, on smartphones, “smart

glasses”, laptops, … Because internet also is available everywhere, the images can be com-

pared with reachable databases like social networks, … Reachable by the user of the camera

or reachable by anyone who reads the image data! So everywhere the persons on a picture

can be identified in real time. Discuss the consequences of this development in different con-

texts.

